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We investigate the effect of a transverse magnetic field on the toric code model. We show that this problem
can be mapped onto the Xu-Moore model and thus onto the quantum compass model, which are known to be
self-dual. We analyze the low-energy spectrum by means of perturbative continuous unitary transformations
and determine accurately the energy gaps of various symmetry sectors. Our results are in very good agreement
with exact diagonalization data for all values of the parameters except at the self-dual point where level
crossings are responsible for a first-order phase transition between a topological phase and a polarized phase.
Interestingly, bound states of two and four quasiparticles with fermionic and bosonic statistics emerge, and
display dispersion relations of reduced dimensionality.
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Topologically ordered phases, such as those present in
fractional quantum Hall systems,1–3 have attracted much at-
tention in the last few years. Indeed, in his seminal paper,
Kitaev showed that topologically degenerate ground states
may serve as a robust quantum memory,4 while braiding of
anyonic excitations5,6 can be used for fault-tolerant quantum
computation. Topologically protected qubits have left the
realm of theory since superconducting nanocircuits led to
their first experimental realization.7 Recent progress in the
field of ultracold atoms trapped in optical lattices also prom-
ises an implementation of such systems.8–10

Although a topological quantum memory is, by nature,
protected from decoherence, it is natural to wonder how
large a local perturbation can be before this protection fails.
With respect to this problematics, the toric code model
�TCM�, which is undoubtedly one of the simplest model dis-
playing topological order,4 is a perfect test ground. In the
presence of parallel magnetic fields, the breakdown of the
topological phase has been shown to be caused by single-
anyon condensation,11–14 leading to two second-order transi-
tion lines merging in a topological multicritical point.13,14

The aim of this Rapid Communication is to investigate
the influence of a transverse field in the TCM, which turns
out to display completely different physics. Indeed, as we
shall see, this model can be mapped onto the self-dual Xu-
Moore model proposed to describe superconducting
arrays.15,16 Note that the Xu-Moore model can also be
mapped onto the quantum compass model17 relevant for or-
bitally frustrated systems and for topologically protected
qubits.18–20 All results given below are thus also valid for
these two models as far as the energy spectrum is concerned.
In the following, we compute the low-energy spectrum by
means of perturbative continuous unitary transformations
�PCUTs� and compare our results with exact diagonalization
�ED� data. Our results reveal the existence of a first-order
phase transition at the self-dual point and emphasize the im-
portance of strong binding effects leading to a plethora of
multiquasiparticle bound states with kinetics of reduced di-
mensionality.

Model. The transverse-field TCM Hamiltonian reads as

H = − J�
s

As − J�
p

Bp − hy�
i

�i
y , �1�

where As=�i�s�i
x, Bp=�i�p�i

z, and the �i
�’s are Pauli matri-

ces. Subscripts s and p refer to stars �vertices� and plaquettes
of a square lattice, whereas i runs over all bonds where spin
degrees of freedom are located �see Fig. 1�. In zero field, one
recovers the TCM �Ref. 4� whose topological ground state
has eigenvalue +1 for all As and Bp operators. Excitations are
Z2-charges with eigenvalue −1 for one As �Z2-fluxes with
eigenvalue −1 for one Bp� localized on the stars �plaquettes�.
These particles are hard-core bosons with mutual half-
fermionic �semionic� statistics. Charges �or fluxes� can only
appear in pairs for a system with periodic boundary condi-

FIG. 1. �Color online� Original square lattice on which
plaquettes p and stars s are defined. Big red �small black� dots

define the lattice � ��̃�. Here, we show the lattice with N=18 spins
and �implicit� periodic boundary conditions. Contour C1 �C2� is one
of the diagonal �antidiagonal� cycles used to define conserved parity
operators.
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tions. In a magnetic field, elementary excitations become
dressed anyonic quasiparticles �QP�.14 In the opposite limit
J=0, the ground state is fully polarized. Elementary excita-
tions are spin flips �magnons�, which are likewise dressed
when switching on J.

Although As and Bp are no longer conserved in a trans-
verse field, the parity operator �i�C�i

y still commutes with H,
provided C is a diagonal or antidiagonal contour such as the
ones depicted in Fig. 1. In the �i

y’s eigenbasis, the parities of
the number of spin flips along such contours are thus con-
served. This important property allows for ED of “rather
large” systems up to N=32 spins, with the periodic boundary
conditions defined in Ref. 4. The product of two parity op-
erators defined on parallel contours is furthermore equal to
the product of all As and Bp operators between the corre-
sponding contours, which relates parities of magnons to that
of anyons.

Self-duality. This correspondence is only one signature of
the strong link between both types of QP which roots in a
crucial property of the model: its self-duality. This feature
directly stems from the mapping of the transverse-field TCM
onto the Xu-Moore model, which is self-dual.15,16,21 Indeed,

let us introduce spin variables living on the dual lattice �̃
�see Fig. 1�,

�̃ js
z = As, �̃ jp

z = Bp, and �̃ j
x = �

j�i

�i
y , �2�

where js�p� denotes the center of a star �plaquette�. The nota-
tion j� i defines the set of all sites i�� whose two coordi-

nates are smaller than those of j� �̃. Hamiltonian �1� can
then be rewritten as that of the Xu-Moore model

H = − J�
j

�̃ j
z − hy�

p̃
�
j�p̃

�̃ j
x, �3�

where the first �second� sum is performed over all sites j

�plaquettes p̃� of �̃. Note that the above mapping only holds
in the thermodynamic limit and for open boundary condi-
tions, and that the infinite number of spins involved in the
definition of �̃ j

x cannot keep track of degeneracies. In par-
ticular, ED spectra of the transverse-field TCM with periodic
boundary conditions discussed below are not symmetric un-
der the exchange hy↔J.

Interestingly, Nussinov and Fradkin17 showed that the Xu-
Moore model can also be mapped onto the quantum compass
model.18 This model has focused much attention recently and
latest numerical results plead in favor of a unique first-order
transition at the self-dual point20,22,23 contrary to the original
claim by Xu and Moore.15,16 This scenario that we shall con-
firm in the following immediately implies that the topologi-
cal phase is rather well protected from transverse fields com-
pared to parallel fields. Indeed, in the former case it breaks
down at hy =J whereas in the latter case, the transition takes
place for a field magnitude of order J /3.14

Perturbative analysis. As in Ref. 14, a PCUT treatment
can be set up in the limit of low �high� field, highlighting the
role of the corresponding QP, namely anyons �magnons�. Ba-
sically, this method transforms H into an effective Hamil-
tonian unitarily equivalent to H but conserving the number of

QP.14,24–28 It allows to investigate the thermodynamic limit
and sorts the energy levels according to their number of QP.
We shall thus investigate low-energy sectors and confront the
QP interpretation stemming from PCUT with ED spectra.

0QP sector. By construction, the 0QP state is the ground
state and lies in the symmetry subspace where all parities are
even. We have computed the perturbative expansion of the
ground-state energy per spin e0, up to order 10, in the low-
field regime. Setting J=cos �, hy =sin �, and t=tan �, it reads
as

e0

cos �
= − 1 −

t2

8
−

13t4

1536
−

197t6

98 304
−

163 885t8

226 492 416

−
186 734 746 441t10

1 174 136 684 544 000
. �4�

This formula and its high-field counterpart �obtained by ex-
changing hy and J� are represented in Fig. 2. As can be seen,
the agreement between �4� and ED results for N=32 spins is
remarkable. Let us mention that the PCUT series expansion
is rather well converged, since the difference between order
8 and 10 is of the order 10−4 for all values of �. Furthermore,
a Padé approximant analysis gives e0��=� /4�=−0.8038�1�,
which perfectly matches previous numerical results.20,23

The cusp in the ground-state energy at �=� /4 indicates
that the topological phase breaks down when hy reaches the
value J, in agreement with the self-duality of the model. The
transition point is best detected when looking at the magne-
tization in y-direction, which is obtained from the Hellmann-
Feynman theorem: my =−�hy

e0. It displays a jump that re-
veals the first-order nature of the transition �see inset of Fig.
2�. Our perturbative treatment therefore confirms the order of
the transition in the quantum compass model.20,22,23

1QP sector. We now turn to the properties of a single QP.
These excitations are static �dispersionless� due to parity
conservation. In the high-field phase, they belong to sectors
with all spin-flip parities even, except exactly one diagonal
and one antidiagonal parities, crossing at the QP’s position.
We computed the energy gap �1 of this 1QP sector which, at
order 10 and in the low-field regime, reads as
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FIG. 2. �Color online� Ground-state energy per spin e0 obtained
from PCUT and ED. The vertical dashed line marks the transition at
�=� /4. Inset: magnetization my =−�hy

e0.
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�1

cos �
= 2 −

t2

2
−

15t4

128
−

575t6

12 288
−

26 492 351t8

1 019 215 872

−
185 172 052 871t10

24 461 180 928 000
. �5�

Once again, ED data perfectly match analytical results, as
can be inferred from Fig. 3, whose upper left pictogram
gives a representation of a 1QP state. At the transition point
hy =J, Padé extrapolations lead to �1��=� /4�=0.9005�1�.
As already mentioned, eigenstates on both sides of the tran-
sition have to be interpreted either in terms of dressed
anyons or in terms of dressed magnons. Furthermore, we
remark that ED, performed on clusters with periodic bound-
ary conditions, can only detect the 1QP excitation at large
field since the excitation of a single anyon in the topological
phase is forbidden for such boundary conditions. We also
note that the one-magnon state is connected to one of the
two-anyon states, which we study below.

2QP sector. In the high-field phase, parity symmetries of
a two-magnon state can be of two kinds. The first is obtained
by setting all parities even except two diagonal or antidiago-
nal parities which are odd as in the two lowest pictograms in
Fig. 3. In this case, the two magnons can only move in the
direction orthogonal to their relative position. This is a nice
illustration of the dimensional reduction phenomenon15,16 in
which the transverse magnetic field induces a one-
dimensional correlated hopping and leads to the formation of
bound states. The second kind is obtained by setting all pari-
ties even except two diagonal and two antidiagonal parities
which are odd, as depicted for instance in the upper right
pictogram in Fig. 3. In such a configuration, parity conser-
vation imposes very limited kinetics of the two magnons.
Again, the transverse magnetic field leads to strong binding
effects.

The self-duality allows for a similar analysis in the topo-
logical phase for anyons, with the restriction that only two-
charge or two-flux states are allowed for a system with

periodic boundary conditions. Such excitations have bosonic
statistics. However, dyonic bound states made of one charge
and one flux �with fermionic statistics� only exist for open
boundary conditions. We have calculated all 2QP excitation
energies up to order 8. Hereafter, we provide the three lowest
gaps in the low-field phase corresponding to the three 2QP
configurations shown in the pictograms of Fig. 3,

�2
a

cos �
= 4 − 2t −

t2

2
+

t3

16
−

17t4

96
+

337t5

14 144
−

1895t6

18 432

+
236 471t7

4 718 592
−

386 712 919t8

5 096 079 360
, �6�

�2
b

cos �
= 4 − t −

5t2

8
+

t3

32
−

353t4

1536
+

1355t5

36 864
−

247 511t6

1 769 472

+
43 261t7

1 048 576
−

1 906 002 767t8

20 384 317 440
, �7�

�2
c

cos �
= 4 − 2t2 −

t4

24
−

1845t6

16 384
−

200 004 589t8

5 096 079 360
. �8�

These PCUT series, plotted in Fig. 3, seem to indicate that
�1 and �2

a are equal at the transition. As previously, we com-
pared them with ED data which, for N=32 spins, imply to
deal with blocks containing up to 16 million states. Although
ED and PCUT results almost lie on top of each other, ED
spectra reveal the formation of energy jumps at the transition
point, which can only be explained by level crossings with
higher-energy states occurring in the thermodynamical limit.
These crossings cannot be captured by the PCUT approach,
whose perturbative nature imposes an adiabatic continuation
of levels. However, we insist on the validity of our results for
all �’s, except at the transition point.

We therefore conclude that the level crossing responsible
for the cusp in the ground-state energy does not originate
from 1QP and 2QP levels, since these excitation energies are
finite at �=� /4.

4QP sector. To address the origin of the cusp, we now
look for the lowest excited state belonging to the same sym-
metry sector as the ground state. PCUT energy ordering sug-
gests a 4QP state as a natural candidate. Such a 4-magnon
state �or a two-flux and two-charge state with bosonic statis-
tics� is built from all configurations where the magnons oc-
cupy the corners of a rectangle. These can be linked to the
configuration where the four QP form a close-packed square,
by shifting the center of mass and/or the relative positions of
the QP. Four such configurations are shown in Fig. 4.

In contrast to 2QP states, 4QP states in this parity sector
have a two-dimensional dispersion. However, a partial di-
mensional reduction still occurs for the relative motion of the
QP. Indeed, the corresponding effective Hamiltonian at order
n in perturbation is found to be that of a single particle mov-
ing in n coupled one-dimensional chains, with an impurity
whose extension grows with n �details will be given else-
where�. As it frequently occurs in this type of problem, the
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FIG. 3. �Color online� Comparison between PCUT and ED re-
sults �N=32� for the 1QP gap �1 and lowest 2QP gaps �2

a,b,c. Pic-
tograms give an illustration of the four corresponding states �with
� /4-tilted lattice compared to Fig. 1�. Crosses denote particles and
filled circles empty sites.
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bound state associated to this impurity cannot be obtained
perturbatively, and one has to resort to a numerical diagonal-
ization of the effective Hamiltonian.

The gap �4 of the 4QP bound state, obtained from the

fourth-order effective Hamiltonian, is shown in Fig. 4, to-
gether with ED results. Both match away from the transition
but, contrary to the ED gap which goes to zero at the transi-
tion, the PCUT gap remains finite. At order 3, one gets �4

=1.728 at �=� /4 whereas at order 4, �4=1.721 suggesting a
fast convergence. This finite value shows once again that
PCUT miss level crossings occurring at the self-dual point,
but give reliable results everywhere else. This discrepancy
can be readily explained by the first-order transition, in
which a cascade of level crossings from high-energy states
down to the ground state occurs in the thermodynamic limit.

Perspectives. We have shown that a transverse magnetic
field in the TCM is the source of important binding effects,
leading to a sequence of bound states with reduced dimen-
sional kinetics, in deep contrast with the parallel field case.14

The fate of these bound states in a general magnetic field,
where single-quasiparticle excitations are also dispersive, is a
fascinating issue left for future studies.
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FIG. 4. �Color online� Lowest 4QP gap �4 obtained from PCUT
and ED. Pictograms illustrate four 4QP configurations, with differ-
ent relative positions.
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